```
جلسه اول كلاس حل قـرين درس ترموديناميک
    منبع : كتاب ون وايلن
```


11.43

A Rankine cycle operating with ammonia is heated by some low temperature source so the highest T is $120^{\circ} \mathrm{C}$ at a pressure of 5000 kPa . Its low pressure is 1003 kPa and it operates with one open feedwater heater at 2033 kPa . The total flow rate is $5 \mathrm{~kg} / \mathrm{s}$. Find the extraction flow rate to the feedwater heater assuming its outlet state is saturated liquid at 2033 kPa . Find the total power to the two pumps.

State 1: $\mathrm{x}_{1}=0, \mathrm{~h}_{1}=298.25 \mathrm{~kJ} / \mathrm{kg}, \mathrm{v}_{1}=0.001658 \mathrm{~m}^{3} / \mathrm{kg}$
State 3: $x_{3}=0, h_{3}=421.48 \mathrm{~kJ} / \mathrm{kg}, \mathrm{v}_{3}=0.001777 \mathrm{~m}^{3} / \mathrm{kg}$
State 5: $\mathrm{h}_{5}=421.48 \mathrm{~kJ} / \mathrm{kg}, \mathrm{s}_{5}=4.7306 \mathrm{~kJ} / \mathrm{kg} \mathrm{K}$
State 6: $\mathrm{s}_{6}=\mathrm{s}_{5} \Rightarrow \mathrm{x}_{6}=\left(\mathrm{s}_{6}-\mathrm{s}_{\mathrm{f}}\right) / \mathrm{s}_{\mathrm{fg}}=0.99052, \quad \mathrm{~h}_{6}=1461.53 \mathrm{~kJ} / \mathrm{kg}$ C.V Pump P1

$$
\begin{gathered}
\mathrm{w}_{\mathrm{P} 1}=\mathrm{h}_{2}-\mathrm{h}_{1}=\mathrm{v}_{1}\left(\mathrm{P}_{2}-\mathrm{P}_{1}\right)=0.001658(2033-1003)=1.708 \mathrm{~kJ} / \mathrm{kg} \\
=>\mathrm{h}_{2}=\mathrm{h}_{1}+\mathrm{w}_{\mathrm{P} 1}=298.25+1.708=299.96 \mathrm{~kJ} / \mathrm{kg}
\end{gathered}
$$

C.V. Feedwater heater: Call $\quad \dot{\mathrm{m}}_{6} / \dot{\mathrm{m}}_{\text {tot }}=\mathrm{x}$ (the extraction fraction)

Energy Eq.: $\quad(1-x) h_{2}+x h_{6}=1 h_{3}$

$$
\begin{aligned}
& \mathrm{x}=\frac{\mathrm{h}_{3}-\mathrm{h}_{2}}{\mathrm{~h}_{6}-\mathrm{h}_{2}}=\frac{762.79-189.42}{3640.6-189.42}=\mathbf{0 . 1 0 4 6} \\
& \dot{\mathrm{m}}_{\text {extr }}=\dot{x}_{\text {tot }}=0.1046 \times 5=\mathbf{0 . 5 2 3} \mathbf{~ k g} / \mathbf{s} \\
& \dot{\mathrm{m}}_{1}=(1-\mathrm{x}) \dot{\mathrm{m}}_{\text {tot }}=(1-0.1046) 5=4.477 \mathrm{~kg} / \mathrm{s}
\end{aligned}
$$

C.V Pump P2

$$
\mathrm{w}_{\mathrm{P} 2}=\mathrm{h}_{4}-\mathrm{h}_{3}=\mathrm{v}_{3}\left(\mathrm{P}_{4}-\mathrm{P}_{3}\right)=0.001777(5000-2033)=5.272 \mathrm{~kJ} / \mathrm{kg}
$$

Total pump work

$$
\dot{\mathrm{W}}_{\mathrm{p}}=\dot{\mathrm{m}}_{1} \mathrm{~W}_{\mathrm{P} 1}+\dot{\mathrm{m}}_{\mathrm{tot}} \mathrm{~W}_{\mathrm{P} 2}=4.477 \times 1.708+5 \times 5.272=\mathbf{3 4} \mathbf{k W}
$$

11.61

In a particular reheat-cycle power plant, steam enters the high-pressure turbine at $5 \mathrm{MPa}, 450^{\circ} \mathrm{C}$ and expands to 0.5 MPa , after which it is reheated to $450^{\circ} \mathrm{C}$. The steam is then expanded through the low-pressure turbine to 7.5 kPa . Liquid water leaves the condenser at $30^{\circ} \mathrm{C}$, is pumped to 5 MPa , and then returned to the steam generator. Each turbine is adiabatic with an isentropic efficiency of 87% and the pump efficiency is 82%. If the total power output of the turbines is 10 MW , determine the mass flow rate of steam, the pump power input and the thermal efficiency of the power plant.

a) $\mathrm{s}_{4 \mathrm{~S}}=\mathrm{s}_{3}=6.8185=1.8606+\mathrm{x}_{4 \mathrm{~S}} \times 4.9606 \quad \Rightarrow \quad \mathrm{x}_{4 \mathrm{~S}}=0.999$

$$
\begin{aligned}
& \mathrm{h}_{4 \mathrm{~S}}=640.21+0.999 \times 2108.5=2746.6 \mathrm{~kJ} / \mathrm{kg} \\
& \mathrm{w}_{\mathrm{T} 1, \mathrm{~S}}=\mathrm{h}_{3}-\mathrm{h}_{4 \mathrm{~S}}=3316.1-2746.6=569.5 \mathrm{~kJ} / \mathrm{kg} \\
& \mathrm{w}_{\mathrm{T} 1}=\eta_{\mathrm{T} 1, \mathrm{~S}} \times \mathrm{w}_{\mathrm{T} 1, \mathrm{~S}}=0.87 \times 569.5=495.5 \mathrm{~kJ} / \mathrm{kg} \\
& \mathrm{~h}_{4 \mathrm{ac}}=3316.1-495.5=2820.6 \mathrm{~kJ} / \mathrm{kg}
\end{aligned}
$$

$$
\mathrm{s}_{6 \mathrm{~S}}=\mathrm{s}_{5}=7.9406=0.5764+\mathrm{x}_{6 \mathrm{~S}} \times 7.675 \Rightarrow \mathrm{x}_{6 \mathrm{~S}}=0.9595
$$

$$
\mathrm{h}_{6 \mathrm{~S}}=168.79+0.9595 \times 2406=2477.3 \mathrm{~kJ} / \mathrm{kg}
$$

$$
\mathrm{w}_{\mathrm{T} 2, \mathrm{~S}}=\mathrm{h}_{5}-\mathrm{h}_{6 \mathrm{~S}}=3377.9-2477.3=900.6 \mathrm{~kJ} / \mathrm{kg}
$$

$$
\mathrm{w}_{\mathrm{T} 2}=0.87 \times 900.6=783.5 \mathrm{~kJ} / \mathrm{kg}
$$

$$
\dot{\mathrm{m}}=\dot{\mathrm{W}}_{\mathrm{T}} /\left(\mathrm{w}_{\mathrm{T} 1}+\mathrm{w}_{\mathrm{T} 2}\right)=10000 /(783.5+495.5)=7.82 \mathbf{~ k g} / \mathbf{s}
$$

b) $\quad-W_{P, S}=(0.001004)(5000-7.5)=5.01 \mathrm{~kJ} / \mathrm{kg}$
$-\mathrm{w}_{\mathrm{P}}=-\mathrm{w}_{\mathrm{SP}} / \eta_{\mathrm{SP}}=5.01 / 0.82=6.11 \mathrm{~kJ} / \mathrm{kg}$
$\dot{\mathrm{W}}_{\mathrm{P}}=\mathrm{w}_{\mathrm{P}} \dot{\mathrm{m}}=-7.82 \times 6.11=-47.8 \mathbf{k W}$
c) $\mathrm{q}_{\mathrm{H}}=\left(\mathrm{h}_{3}-\mathrm{h}_{2}\right)+\left(\mathrm{h}_{5}-\mathrm{h}_{4}\right)=3316.1-130.2+3377.9-2820.6=3743.2 \mathrm{~kJ} / \mathrm{kg}$
$\mathrm{w}_{\mathrm{N}}=1279.0-6.11=1272.9 \mathrm{~kJ} / \mathrm{kg}$
$\eta_{\mathrm{TH}}=\mathrm{w}_{\mathrm{N}} / \mathrm{q}_{\mathrm{H}}=1272.9 / 3743.2=\mathbf{0 . 3 4}$

